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An exact treatment for non-linear relaxation processes 
governed by the rotational Smoluchowski equation 

Akio Morita 
Engineering School, Trinity College, Dublin 2, Ireland and Department of Chemistry, 
Akita University, Akita-shi 010, Japan? 

Received 17 August 1978 

Abstract. Taking into account a non-linear term in the Smoluchowski equation for the 
rotational Brownian motion of a symmetrical top, we have obtained exactly the Laplace 
transform of the conditional probability density function in terms of infinite continued 
fractions. 

1. Introduction 

We shall calculate the conditional probability density function p ( 0 ,  t )  from the rota- 
tional Smoluchowski equation for a symmetric top (Morita 1978a): 

where t is the time, kB is the Boltzmann constant, T is the absolute temperature, I p  is 
the friction constant, 9 is the angle which the axis of symmetry of the top makes with an 
arbitrary direction fixed in space, and V(d, t )  is the potential energy function. 

We shall confine ourselves to the case where 

V =  - B  COS 8, ( 2 )  

where B is a constant. Examples in which V can be written as (2) are: (i) the rotational 
motion of the symmetric top under the influence of the gravitational force with 
B = MgR where M is the mass of the top, g is the gravitational constant and R is the 
distance between the centre of mass and the origin in space, (ii) the hindered rotation of 
the symmetric top with the height of the potential energy barrier Vo, viz. B = Vo, and 
(iii) the interaction of a dipole p with an external electric field F, in which case B = pF. 

Even though (1) is a linear equation in p, p may be expressed non-linearly with 
respect to B. We shall take this non-linearity fully into account. Recently Morita 
(1978b) has obtained exactly the Laplace transform of the electric polarisation follow- 
ing the sudden application of a constant electric field, by means of an infinite continued 
fraction. We shall follow this method in calculating the Laplace transform of p exactly 
in terms of infinite continued fractions. 
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2. Theoretical treatment 

On substituting (2) into ( l ) ,  we immediately find that 

)I %=--[sin ~a e($+b sin ep , 
a t  sin 8 a0 

(3) 

where 
D = kBT/IP and b = B/ksT. (41, ( 5 )  

We express p ( x ,  t )  where x = cos 8 in terms of the Legendre polynomials P, (x), namely, 

which leads to 

In order to calculate the conditional probability density function p ( x ,  t )  we have to use 
the following initial condition: 

p ( x ,  t )  = S(X  - x o )  at t = 0, (8) 
where S ( x )  is the Dirac delta function, Thus it follows from (7) that 

2 n + 1  
a,(O)=- P" (XO). 2 

Now, substituting (6) in (3) and using the relations 

( x 2  - l)dP,(x)/dx = nxP,(x) - nPn-l(x) 

(n + l )Pn+l(x)  - (2n + l)xP,(x) + nPnPl(x) = 0, 
and 

we deduce that 

daoldt = 0 
and 

(9) 

n(n + 1) 
2 n + 3  ' 

r n =  -- n(n  + 1) 
q n  =- 2 n - 1  ' pn = D n ( n  + l ) ,  

and 
A =Db. 

On taking the Laplace transform of both sides of (9) we find that 

(s + P n ) A n ( S )  + A  [ q n A n - l ( s )  + r n A n + 1 ( ~ ) 1 =  an(o) (n = 1 , 2 , 3 . .  .), (16) 
where 

r m  
A,(s )  = u,(t) exp(-st) dt. 

0 



Non-linear relaxation processes 

Equation (16) may be written, 

(L + A M)A = a 

where 

993 

(18) 

l s f p 1  0 0 . . . \  

\ . . .  . . .  . . . . . .  
. 0 rl 0 0 0 . . . .  .=[E q3 O r 2 0 0  o r3 0 :::I, 

0 0 q4 0 q 4  . . .  
\ . . .  . . . . . .  . . . . . .  I 

and 

At this stage, we wish to calculate the inverse matrix 

W =  ( L + A M ) - '  

where 

\ . . . . . . . . . . . .  . . .  . . . . . .  

Although the method to obtain Win a power series of A is given in the Appendix, in this 
section we shall show how W may be calculated exactly in terms of continued fractions. 

In view of the fact that the column matrix 
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can be obtained from the relation, 

W, = WF,, 

where 

We find that 

(L+AM)W,, =Fn. 

Equations (18), (25) and (28) lead to 

and 

Thus we have calculated w,,,(s) in (24) from which A,(s )  can be obtained. Then on 
inverting A,(s) ,  we find a,(t) from which p ( x ,  t )  can be determined in view of ( 6 ) .  
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3. Discussion 

995 

We shall first show that p ( x ,  r )  satisfies the condition 

exp(bx). lim p ( x ,  t )  = - 
1-c2 sinh b 

aob 

Alternatively, in view of (7) we wish to show 

a,(co)=lim un(r)=-- '"2' ,i",EPb I-: P,(x) exp(bx) dx 
i-m 

- 2 n + 1  2 sinh 'Ob b (2T)1/21n+l,2(b) b (37) 

where Ifl+1/2(b) stands for the modified Bessel function of the first kind of order n + 1/2. 
Equation (37) also can be written (Watson 1944) 

2 n + 1  aO ( -  l)'(n + r)! 
(exp(b) ZO r!(n - r)!(2b)r 2 sinh b 

= - - 

n 

+ ( - l)"+'  exp( - b)  

This immediately gives 

U 1 (a) = 3 u ~ L  (b ) 

where L ( z )  represents the Langevin function defined by 

L ( z )  = coth z - l / z  = ~ [ ( 1 / 3 )  - (2'/45) +(2z4/945) -. . .]. (41) 

(2n + l/z)In+1/2(2) =L-i/z(z)-In+3/2(z) (42) 

I n + l / z  

In  view of the recurrence relation 

we find that 
2 

, (n = 1 , 2 , 3 , .  . . ) .  (43) 
Z 2  

-- - 
In-112 2n + I +  

z 2  
2 n + 3 +  

2 n + 5 + .  . 
Therefore it immediately follows from (37) and (43) that 

b 

-=- a,(03) 2 n + 1  b 2  
~ , - ~ ( a )  2n-1  b2 

2 n + 1 +  
2 n + 3 +  

2 n + 5 + .  , 

(44) 

Now we shall show that a , ( a )  in equation (18) in fact satisfies (44). Using (22) together 
with the theorem concerning the Laplace transform given between (21) and (22) of 
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Morita (1978b) we find that 

un(m) = -Aqluo lim w,,~.  (45) 
s-0 

This leads not only to (39) and (40) (see (20)  of Morita (1978b)) but also to (44). Thus 
the condition in (36) has been proved. 

At this stage it is worthwhile calculating correlation functions from the present 
results. On multiplying (18) by Pm(xo) and averaging over xo we obtain 

z[(Pm(x~)pn(x)) l= (2n + 1)Wn.m 

where 
o? 

a g ( t ) l =  I d t )  exp(-st) dt. 
0 

Particularly when m = n = 1 and m = n = 2 in (46), we immediately find that 



Non-linear relaxation processes 997 

These may be inverted, after neglecting higher terms than the order of A 4 ,  to give 

( 5 2 )  

and 

It follows immediately that (cos B(0)cos e ( t ) )  and (PZ(COS B(0))Pz(cos B ( t ) ) )  for A # 0 
are not simply exponential decaying functions. 

Since we have been unable to find the exact results given in § 2 in the literature, they 
are useful to check results from a more general formulation concerning non-linear 
relaxation phenomena than the one treated here as a special case. 

Finally it should be noted that the mathematical method used in § 2 can also be 
applied to find the exact solution of a difference equation in the form of (30). 
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Appendix: The calculation of W as a power series in A 

The matrix W in (23) may be written 

W = (L + A M)- '  = [L(E + A L-'M)]-' = (E + A L-'M)-'L-' 

= [E - A L-'M + A 'L-l ML- 'M - . . . + ( - 1)"h " (L-'M)" + . . .]L-' (A. 1) 

where the unit matrix E is defined by 

' 1 0 0 . . .  
E = [  ; 1 0  -). 

. . .  
\ .  . . . . . . . . . . .: 

Since the inverse of the diagonal matrix L can readily be found, it follows from (A. 1) that 
W can be calculated simply by obtaining matrix products (L-'M)" L-', which is easy, but 
becomes tedious as n increases. 
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